

1 Assessing Responses and Impacts of Solar climate intervention

2 on the Earth system with stratospheric aerosol injection

3 (ARISE-SAI)

4

5	Jadwiga H. Richter ¹ , Daniele Visioni ² , Douglas G. MacMartin ² , David A. Bailey ¹ , Nan
6	Rosenbloom ¹ , Walker R. Lee ² , Mari Tye ¹ , Jean-Francois Lamarque ¹
7	
8	¹ Climate and Global Dynamics Laboratory, National Center for Atmospheric Research, Boulder CO
9	² Sibley School for Mechanical and Aerospace Engineering, Cornell University, Ithaca NY
0	
1	Correspondence to: Jadwiga H. Richter (jrichter@ucar.edu)

12

13 Abstract. Solar climate intervention using stratospheric aerosol injection is a proposed method of reducing global

14 mean temperatures to reduce some of the consequences of climate change. A detailed assessment of responses and 15 impacts of such an intervention is needed with multiple global models to support societal decisions regarding the use

- 16 of these approaches to help address climate change. We present here a new modeling protocol and a 10-member
- 17 ensemble of simulations using one of the most comprehensive Earth system models, aimed at simulating a plausible
- 18 deployment of stratospheric aerosol injection and reproducibility of simulations using other Earth system models to
- 19 enable community assessment of responses of the Earth system to solar climate intervention. The Assessing
- 20 Responses and Impacts of Solar climate intervention on the Earth system with stratospheric aerosol injection
- 21 (ARISE-SAI) simulations utilize a moderate emission scenario, introduce stratospheric aerosol injection at ~ 21 km
- 22 in year 2035, and keep global mean surface air temperature near 1.5°C above the pre-industrial value (ARISE-SAI-
- 23 1.5). We present here the detailed set-up, aerosol injection strategy, and mean surface climate changes in these
- simulations so they can be reproduced in other global models.

25 1 Introduction

Solar climate intervention (SCI), or solar geoengineering, is a proposed strategy that could potentially reduce the adverse effects on weather and climate associated with climate change by increasing the reflection of sunlight by particles and clouds in the atmosphere. The recent National Academies of Sciences, Engineering and Medicine (NASEM) report on solar geoengineering research and governance (NASEM, 2021) calls for increased research to understand the benefits, risks and impacts of various SCI approaches. Stratospheric aerosol injection (SAI) has been shown to be a promising method of global climate intervention in terms of restoring climate to present day conditions (e.g.: Tilmes et al., 2018; MacMartin et al. 2019; Simpson et al., 2019). However, there still exist large uncertainties

33 in climate response and impacts (NASEM, 2021, Kravitz and MacMartin, 2020), and ensuing human and ecological 34 impacts (Carlson and Trisos, 2018). Due to the large internal variability of Earth's climate, the evaluation of SCI risks 35 and impacts requires large ensembles of simulations (Deser et al., 2012; Kay et al., 2015; Maher et al., 2021) and 36 Earth system models (ESMs) capable of simulating the key processes and interactions between multiple Earth system 37 components, including prognostic aerosols, interactive chemistry, and coupling between the atmosphere, land, ocean, 38 and sea ice. For studies of climate intervention using SAI, an accurate representation of the entire stratosphere, 39 including dynamics and chemistry, is needed to capture the transport of aerosols and their interactions with 40 stratospheric constituents such as water vapor and ozone (e.g.: Pitari et al., 2014).

41 The Geoengineering Model Intercomparison Project (GeoMIP) for many years has facilitated inter-model 42 comparisons of possible climate responses to SCI to examine where model responses to geoengineering were robust 43 and identify areas of large uncertainty. However, in order to ensure participation from multiple ESMs, the design of 44 GeoMIP simulations has often been simplified by utilizing solar constant reduction (Kravitz et al., 2013; Kravitz et 45 al., 2021) or prescription of an aerosol distribution (Tilmes et al., 2015) or a spatially uniform injection rate of SO₂ 46 (i.e. continuous injection from 10°N to 10°S in the most recent G6sulfur experiments (Visioni et al., 2021b). Visioni 47 et al. (2021a) showed that solar dimming does not produce the same surface climate effects as simulating aerosols in 48 the stratosphere. Kravitz et al. (2019) showed that strategically injecting SO₂ at multiple locations to maintain more 49 than one climate target may reduce some of the projected side-effects by more evenly cooling at all latitudes; hence, 50 model experiments with plausible implementation of SCI are needed in order to assess risks and benefits of these 51 strategies. The Geoengineering Large Ensemble (GLENS, Tilmes et al. 2018), which used version 1 of the 52 Community Earth System Model with the Whole Atmosphere Community Climate Model as its atmospheric 53 component (CESM1(WACCM), Mills et al. 2017), was the first large-ensemble (20-member) set of climate 54 intervention simulations carried out with a single ESM that interactively represented many of the key processes 55 relevant to SAI and has provided a community dataset for the examination of potential impact of SAI on mean 56 climate and variability. GLENS utilized sulfur dioxide (SO₂) injections that were strategically placed every year to 57 keep the global mean temperature, equator-to-pole, and pole-to-pole temperature gradients near 2020 levels in an 58 effort to minimize the surface temperature impacts of this intervention. However, GLENS has several experimental 59 design issues that are not aligned with realistic projections for Earth system outcomes that would provide more 60 accurate representation of possible real-world effects and impacts. Firstly, GLENS adopted a high emission scenario 61 of RCP8.5 until 2100, requiring a very large amount of stratospheric aerosols by the end of the century to offset the 62 continuously increasing emissions. Estimates for future emissions based on current commitments are lower than 63 RCP8.5 (Hausfather and Peters, 2020), and thus impact analyses, especially based on the last two decades of the 64 GLENS, are likely to overestimate the risks and adverse impacts of SAI. Additionally, in the GLENS simulations, 65 intervention commenced in 2020, adding another unrealistic element from a real-world standpoint. Furthermore, 66 SO2 injections were at 23-25 km altitude, which is technologically more difficult to achieve than a lower altitude 67 injection (Bingaman et al. 2020). 68 Tilmes et al. (2020) has carried out simulations with SO₂ injections with CESM2(WACCM6) and GLENS-

69 like set-up for the Shared Socioeconomic Pathway SSP5-8.5 and SSP5-3.4-OS scenarios (O'Neill et al., 2016). Here

- 70 we describe a new set-up of an ensemble of simulations with CESM2(WACCM6) designed to simulate a more
- 71 plausible implementation scenario of SCI using SAI that can be replicated by other modeling centers, and present
- 72 preliminary diagnostics to begin enabling community assessment of responses of the Earth system to such an
- 73 intervention.
- 74 2 Methods
- 75

76 2.1 Model Description

For all simulations presented here, we utilize here the newest, most comprehensive version of the NCAR
whole atmosphere ESM, the Community Earth System Model, version 2 with the Whole Atmosphere Community
Climate Model version 6 as its atmospheric component (CESM2(WACCM6), Gettelman et al., 2019; Danabasoglu
et al., 2020). CESM2(WACCM6) was used to contribute climate change projection simulations to the Coupled
Model Intercomparison Project Phase 6 (CMIP6) (Eyring et al., 2016). CESM2(WACCM6) has numerous
improvements to all its components, including fully interactive tropospheric chemistry and an interactive crop model
as compared to CESM1(WACCM) (Mills et al., 2017).

84 CESM2(WACCM6) is a fully coupled ESM with prognostic atmosphere, land, ocean, sea-ice, land-ice, 85 river and wave components. The atmospheric model, WACCM6, uses a finite volume dynamical core with 86 horizontal resolution of 1.25° longitude by 0.9° latitude. WACCM6 includes 70 vertical levels with a model top at 87 4.5×10^6 hPa (~ 140 km). Tropospheric physics in WACCM6 are the same as in the lower top configuration, the 88 Community Atmosphere Model version 6 (CAM6) and use the Zhang and McFarlane (1995) convection 89 parameterization, the Cloud Layers Unified By Binormals (CLUBB; Golaz et al., 2002; Larson, 2017) unified 90 turbulence scheme, and the updated Morrison-Gettelman microphysics scheme (MG2; Gettelman & Morrison, 91 2015). A form drag parameterization of Beljaars et al. (2004) and an anisotropic gravity wave drag scheme 92 following Scinocca and McFarlane (2000) are now used in place of the turbulent mountain stress parameterization 93 that was used in CESM1. CESM2(WACCM6) includes a parameterization of non-orographic waves which follows 94 Richter et al. (2010) with changes to tunable parameters described in Gettleman et al. (2019). Parameterized gravity 95 waves are a substantial driver of the quasi-biennial oscillation (QBO) which is internally-generated in 96 CESM2(WACCM6). CESM2(WACCM6) includes prognostic aerosols which are represented using the Modal 97 Aerosol Model version 4 (MAM4) as described in Liu et al. (2016). CESM2(WACCM6) also includes a 98 comprehensive chemistry module with interactive tropospheric, stratospheric, mesospheric and lower thermospheric 99 chemistry (TSMLT) with 228 prognostic chemical species, described in detail in Gettleman et al. (2019). 100 The ocean model in CESM2(WACCM6) is based on the Parallel Ocean Program version 2 (POP2; Smith et 101 al., 2010; Danabasoglu et al., 2012), but contains many advances since its version in CESM1. These include a new 102 parameterization for mixing effects in estuaries, increased mesoscale eddy (isopycnal) diffusivities at depth, use of 103 prognostic chlorophyll for shortwave absorption, use of salinity-dependent freezing point together with the sea ice 104 model, and a new Langmuir mixing parameterization in conjunction with the new wave model component 105 (Danabasoglu et al., 2020). The horizontal resolution of POP2 is uniform in the zonal direction (1.125°), and varies

- 106 from 0.64° (occurring in the Northern Hemisphere) to 0.27° at the Equator. In the vertical, there are 60 levels with a 107 uniform resolution of 10 m in the upper 160m. The ocean biogeochemistry is represented using the Marine 108 Biogeochemistry Library (MARBL), which is an updated implementation of the Biochemistry Elemental Cycle 109 (Moore et al., 2002; 2004; 2013). CESM2 uses version 3.14 of the NOAA WaveWatch-III ocean surface wave 110 prediction model (Tolman, 2009). Sea-ice in CESM2(WACCM6) is represented using CICE version 5.1.2 (CICE5; 111 Hunke et al., 2015) and uses the same horizontal grid as POP2. The vertical resolution of sea-ice has been enhanced 112 to eight layers, from four in CESM1. The snow model resolves three layers, and the melt pond parameterization has 113 been updated (Hunke et al., 2013). 114 CESM2(WACCM6) uses the Community Land Model version 5 (CLM5) (Lawrence et al., 2019). As 115 compared to CLM4, CLM5 includes improvements to soil hydrology, spatially explicit soil depth, dry surface layer 116 control on soil evaporation, and an updated ground-water scheme, as well as several snow model updates. CLM5 117 includes a global crop model that treats planting, harvest, grain fill, and grain yields for six crop types (Levis et al., 118 2018), a new fire model (Li et al., 2013; Li and Lawrence, 2017), multiple urban classes and an updated urban 119 energy model (Oleson & Feddema, 2019), and improved representation of plant dynamics. The river transport model 120 used is the Model for Scale Adaptive River Transport (MOSART; H. Y. Li et al., 2013).
- 121

122 2.2 Reference simulations

123 We use the moderate Shared Socioeconomic Pathway scenario of SSP2-4.5 for our simulations, which more closely 124 captures current policy scenarios compared to higher emission scenarios such as SSP5-8.5 (Burgess et al., 2020). 125 SSP2-4.5, which marks a continuation of the Representative Concentration Pathway 4.5 (RCP4.5) scenario, is a 126 "middle-of-the-road," intermediate mitigation scenario where "the world follows a path in which social, economic, 127 and technological trends to not shift markedly from historical patterns" (O'Neill et al., 2017), representing the 128 medium range of future forcing pathways (O'Neill et al., 2016). A 5-member reference ensemble with 129 CESM2(WACCM6) and the SSP2-4.5 scenario was carried out as part of the CMIP6 project for years 2015 - 2100. 130 Surface temperature evolution and equilibrium climate sensitivity in these simulations are described in detail in 131 Meehl et al. (2020). We carried out an additional 5-member ensemble of these simulations from years 2015 - 2069 132 with augmented high-frequency output for high-impact event analysis, as well as additional output for the land 133 model to match the SCI simulations. The additional 5-member ensemble was branched from the three existing 134 historical CESM2(WACCM6) simulations in the same manner as the first 5-member ensemble, but with an addition 135 of small temperature perturbations for each ensemble member ([6, 7, 8, 9, 10] $\times 10^{-14}$ K, respectively), at the first 136 model timestep. CESM2 ranks highly against other CMIP6 models in the ability to represent large scale circulations 137 and key features of tropospheric climate over the historical time period (e.g.: Simpson et al., 2020; Duviver et al., 138 2020; Coburn and Pryor 2021).

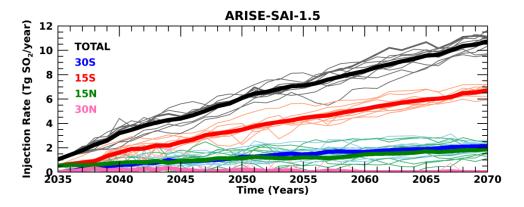
139

140 2.3 Climate intervention simulations

- 141 We carried out a 10-member ensemble of SAI simulations with CESM2(WACCM) designed to simulate a plausible
- 142 implementation scenario of SCI using SAI for evaluation of potential climate intervention risks and impacts. These

143 simulations are the first of a planned set of different SCI implementation scenarios; we denote the entire planned set 144 of simulations as "Assessing Responses and Impacts of Solar climate intervention on the Earth system," or 145 "ARISE," with simulations of SAI denoted "ARISE-SAI". The first ARISE-SAI simulations, presented here, utilize 146 a moderate emission scenario, SSP2-4.5 (O'Neill et al., 2016), and begin intervention in 2035 by applying SAI to 147 cool the Earth with the target of maintaining global surface temperatures of $\sim 1.5^{\circ}$ C above preindustrial levels, the 148 target proposed in the 2015 Paris agreement and described by the IPCC as a possibly important threshold for climate 149 safety (IPCC 2018). The simulation set is called ARISE-SAI-1.5. Subsequent ARISE-SAI simulations are planned 150 with varying temperature targets and start dates. Sulfur dioxide injections in the ARISE-SAI-1.5 simulations are 151 placed at four injection locations (15°S, 15°N, 30°S, 30°N) into one grid box at 180° longitude, and bounded by two 152 pressure interfaces: 47.1 hPa and 39.3 hPa (approximate geometric altitude at gridbox midpoint of 21.6 km). The 153 injection latitudes are the same as used in GLENS and in previous studies examining the model's responses to 154 single-point SO2 injections (Tilmes et al., 2017; Richter et al., 2017). These four injection locations are sufficient to 155 independently control the targets that we are trying to achieve (Kravitz et al., 2017). This injection altitude is 156 estimated to be achievable by existing aircraft technologies that could be adapted for climate intervention use 157 (Bingaman et al., 2020). 158 There is uncertainty among Earth system models with regard to when Earth's global mean surface 159 temperature (T0) will reach 1.5°C above pre-industrial levels. The recent Intergovernmental Panel of Climate 160 Change (IPCC) Sixth Assessment Report (AR6) (IPCC, 2021) finds that 1.5°C over pre-industrial will very likely be 161 exceeded in the near term (2021-2040) under the very high greenhouse gas (GHG) emission scenario (SSP5-8.5) 162 and likely to be exceeded under the intermediate and high GHG emissions scenarios (SSP2-4.5 and SSP3-7.0). The 163 IPCC AR6 defines 1.5°C as the time at which T0 will reach 0.65°C above the historical reference period of 1995 -164 2014. The T0 between 1995 - 2014 is 0.85°C above the pre-industrial (PI) value defined as the 1850 - 1900 average 165 in the observational record. Using 31 global models, Tebaldi et al. (2021) found that the average across models of 166 when 1.5°C will be reached in 2028 under the SSP2-4.5 scenario (using 1995-2014 as 0.84°C rather than 0.85°C 167 above PI), but with considerable variation across models. The 20-year running average of T0 in CESM2(WACCM6) 168 (T0_CESM2) relative to 1995 - 2014, reaches 0.85°C (or ~ 1.5°C above PI T0) in 2029. To simplify future model 169 intercomparisons, we choose the time period of 2020 - 2039 (or ~ 2030 levels) as our reference period of when 170 T0_CESM2 is ~ 1.5°C above PI values, and make that the target T0 in the climate intervention simulations. The year 171 2035 was chosen as the beginning of intervention, since T0 CESM2 in every ensemble member of SSP2-4.5 172 simulations is then consistently above the target temperature. 173 The amount of injection at each location is specified by a "controller" algorithm (MacMartin et al., 2014; 174 Kravitz et al., 2017) that was used in GLENS and the simulations presented in Tilmes et al. (2020). After each year 175 of simulation, the algorithm calculates the global mean temperature, T0, north-south temperature gradient, T1, and 176 equator-to-pole temperature gradient, T2, and based on the deviation from the goal, specifies the annual values of

injections at the four locations for the subsequent year. T1 and T2 were defined in Kravitz et al. (2017), Equation 1.


178 Based on the 2020 - 2039 mean of the SSP2-4.5 simulations with CESM2(WACCM6), the surface temperature

targets for the ARISE-SAI-1.5 ensemble for T0, T1, and T2 are 288.64 K, 0.8767 K, and -5.89 K, respectively.

- 180 Simulations are carried out for 35 years (2035 2069), which is sufficient for us to consider both a transition period
- 181 of ~10 years and a quasi-equilibrium of at least 20 years after the controller converges. All simulations have
- 182 comprehensive monthly as well as high-frequency output for analysis of high-impact events (described in detail in
- **183** the Data Records section).
- 184 The first five members of ARISE-SAI-1.5 simulations were initialized in 2035 from the first five members
- (001 to 005) of the SSP2-45 simulations carried out with CESM2(WACCM6); hence, all had different initial ocean,
- sea-ice, land, and atmospheric initial conditions on January 1, 2035. Similarly to the SSP2-45 simulations,
- subsequent ensemble members (006 through 010) were initialized from the same initial conditions as members 001
- through 005, respectively, with an addition of a small temperature perturbation to the atmospheric initial condition
- to create ensemble spread.

190

Figure 1: SO₂ injection rate as a function of time in ARISE-SAI-1.5 simulations at 30°S (blue), 15°S (red), 15°N
(green), 30°N (pink), and total (black). Thin lighter colored lines represent individual ensemble members, whereas
thick lines show the 10-member ensemble mean.

194

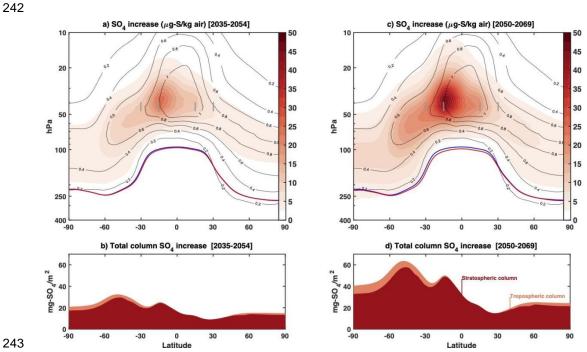
195 The amount of SO₂ injection in the ARISE-SAI-1.5 simulations chosen by the controller algorithm is 196 shown in Figure 1. The majority of SO2 is injected at 15°S, with an approximate linear increase from 0.5 Tg SO2 per 197 year in year 2035 to 6 Tg SO₂ per year in 2069. SO₂ injections at 30°S and 15°N are about ¹/₃ of that injected at 15°S. 198 Throughout all the ARISE-SAI-1.5 simulations, the amount of SO2 injection at 30°N is very small, less than 0.5 Tg 199 SO_2 per year, diminishing to nearly zero by the end of the simulations. The distribution of SO_2 across the four 200 injection latitudes in ARISE-SAI-1.5 is very different from that in GLENS (Tilmes et al., 2018) despite having the 201 same goals for the controller. In GLENS, the majority of SO₂ was injected at 30°S and 30°N, with a significant 202 amount at 15°N, and almost none at 15°S; that is, GLENS required more injection in the Northern Hemisphere than 203 the Southern in order to maintain the interhemispheric temperature gradient T1, whereas ARISE-SAI-1.5 requires 204 more injection in the Southern Hemisphere to maintain T1. GLENS also required more at 30°N/30°S to maintain T2

than is required in ARISE-SAI-1.5. It is unclear at this time how much of this difference is a result of the differentmodel version and how much is a result of changes in the forcing between RCP8.5 and SSP2-4.5.

207 2.4 Output

- 208 All model output for the simulations is based on community input and provided in NetCDF format. All variables are
- in time-series format, with one variable per file. 3-dimensional atmospheric output is on the original 70 model
- 210 levels. Output consists of standard monthly mean CMIP6 output for the atmospheric, land, ocean, and sea-ice
- 211 models. In addition, higher-frequency (daily averaged, 3-hourly averaged, 3-hourly instantaneous, and 1-hourly
- 212 mean) output is available for the atmospheric model that will enable analysis of extreme events (e.g.: Tye et al.
- 2022). The atmospheric output at various time frequencies is described in Appendix A, Tables A1 A4. Daily
- 214 averaged output of land model variables is shown in Tables A5 and A6, whereas 6-hourly output from the land
- 215 model is listed in Table A7. Tables A8 and A9 show the daily output from the ocean and sea-ice models
- 216 respectively. The table captions describe which output is specific to ARISE-SAI-1.5 and the new five SSP2-4.5
- 217 CESM2(WACCM6) ensemble members, and which is common to all simulations. An online table showing all the
- 218 output fields for the simulations, along with their description and units, is at:
- 219 https://www.cgd.ucar.edu/ccr/strandwg/WACCM6-TSMLT-SSP245/.
- 220

221 3 Results


- The intent of ARISE-SAI simulations is to provide the broader community a data set for examining various impacts
 of SCI on the multiple components of the Earth system. Below we present basic diagnostics that verify that the SO₂
 injections and controller are working as intended, and we describe how well the temperature targets are being met.
 Detailed analysis of the simulations are left for future work.
- 226

227 3.1 Stratospheric Aerosols

228 Injection of sulfur dioxide into the stratosphere results in the formation of sulfate aerosols, which are 229 transported by the stratospheric Brewer-Dobson circulation (Andrews et al., 1987; Times et al., 2017). The 230 dominance of SO₂ injections at 15°S in ARISE-SAI-1.5 results in a stratospheric sulfate (SO₄) increase that 231 primarily occurs in the southern hemisphere, with the majority of SO₄ concentrated near the primary injection 232 location (Figure 2a, 2b). Averaged over the 2035 - 2054 period, there is a peak SO₄ increase of 25 mg-S/kg air (Fig 233 2a) relative to the 2020 - 2039 mean, and averaged over 2050 - 2069an SO₄ increase of 48 mg-S/kg air is found near 234 15°S, 40 hPa (Fig 2b). The zonally averaged latitudinal distribution of the increase in the column of SO₄ is shown in 235 Figures 2c, d; both figures show the strong hemispheric asymmetry, and also a double peak at around 15°S and one 236 near 50°S. The peak near 15°S is due to the predominant location of the injection, and matches the peak in 237 concentration, the latter is due to the largest vertical stratospheric layer over which SO₄ is spread out (between 10 238 and 22 km) compared to the layer in the tropical stratosphere (between 18 and 26 km). Integrated over 20 year 239 periods of ARISE-SAI-1.5 simulations, there is little difference in the latitudinal distribution of column SO₄ between 240 the various ensemble members, but amplitude differences of up to 15% exist (not shown), reflecting variability in 241 the amount of SO₂ injection at each location and small differences in the stratospheric circulation.

244

Figure 2: Zonal mean stratospheric SO₄ concentration increase (in μ g-S/kg of air) in (a) 2035-2054 and (c) 2050-2069 relative to the 2020 - 2039 mean. Black contour lines show the background concentration in 2020-2039. Blue line shows the annual mean tropopause height in the control period; the red line shows the annual mean tropopause height in the ARISE simulation in 2035-2054 and 2050-2069, respectively. Gray shadings indicate the grid-boxes where SO₂ is injected. Zonal mean total increase in the column burden of sulfate (in mg-SO₄/m²) for (b) 2035 - 2054 and (d) 2050 - 2069. The contribution to the column increase is shown in dark red, for the fraction located in the stratosphere, and in orange for the fraction located in the troposphere.

252

253 3.2 Meeting temperature targets

254 Global mean surface temperature, the inter-hemispheric temperature gradient, and equator-to-pole temperature 255 gradients for the SSP2-4.5 and ARISE-SAI-1.5 simulations are shown in Figure 3. There is a notable difference in 256 behavior of T1 and T2 in the SSP2-4.5 simulations as compared to the RCP8.5 simulations with CESM1(WACCM) 257 (not shown). In the CESM1(WACCM) simulations with RCP8.5, T1 and T2 were increasing steadily with time of 258 simulation, reaching a change in T1 of nearly 0.45 K, and a T2 change of 0.3 K by 2070 relative to ~ 2020 - 2039 259 mean (Tilmes et al. 2018). In contrast, T1 and T2 in the SSP2-4.5 simulation are increasing much more slowly, less 260 than 0.05 K for T1 and less than 0.1 K for T2 between the reference period (2020-2039) and 2070. The more 261 moderate (SSP2-4.5) emission scenario used in the CESM2(WACCM6) control simulations partially explains the 262 slower increase of T1 and T2 with time, however not all. Simulations with CESM2(WACCM6) and SSP5-8.5 263 scenarios also show a much slower increase of T1 and T2 as compared to CESM1(WACCM) with RCP8.5.

- Differing modeling physics, in particular cloud feedbacks, between CESM1 and CESM2 are most likely responsible
 for the differences in projected spatial patterns of surface warming between the two model configurations, as well as
 changes in the Atlantic Meridional Overturning Circulation as discussed in Tilmes et al. (2019). Simulations with
 CESM2 and RCP emissions are currently in production to understand the relative role of differences in forcing and
 differences in model physics on projected spatial patterns of global mean temperature and other variables between
 CESM1 and CESM2.
- 270

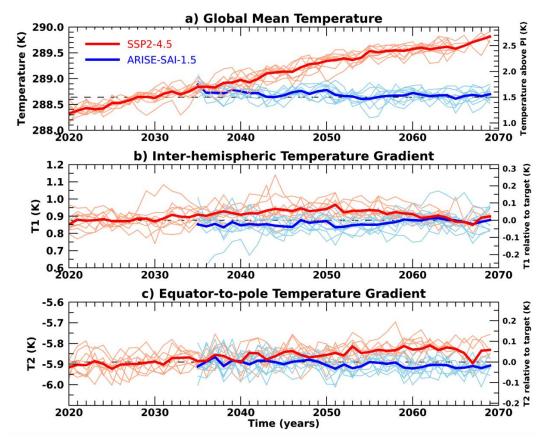
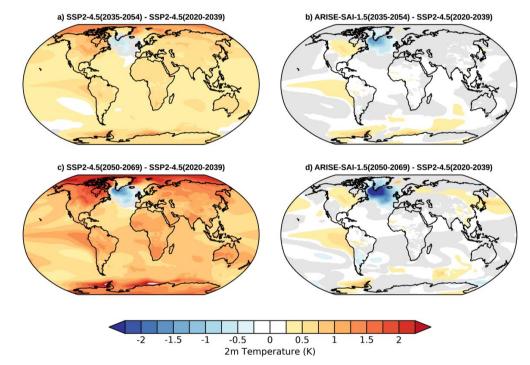


Figure 3: Global mean a) surface temperature, b) inter-hemispheric temperature gradient, T1, and c) equator-to-pole
temperature gradient, T2, for SSP2-4.5 (red) and ARISE-SAI-1.5 (blue) simulations. Thin lines represent individual

- ensemble members, whereas the thick lines show the ensemble mean.
- 275

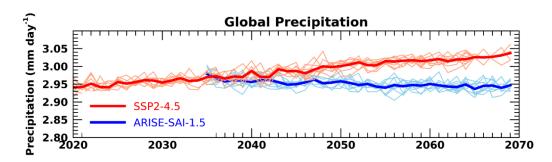

276 The differences between the projected surface temperature patterns in CESM2 as compared to CESM1

- 277 have implications for climate intervention. Since the changes in T1 and T2 targets differ between the
- 278 CESM1(WACCM) and CESM2(WACCM6) future simulations, the controller selects different SO₂ injection
- 279 locations to best counteract these changes. Injections needed to offset increasing T1 and T2 in CESM1(WACCM)

280	required primarily injections at 30°S and 30°N, whereas a small change in T1 and T2 relative to the 2020 - 2039
281	period in CESM2(WACCM6), SSP2-4.5 requires injections primarily at 30°S. The SO ₂ injections applied in ARISE-
282	SAI-1.5 do a very good job at keeping the global mean temperature, T1 and T2 at the target levels. This is
283	demonstrated by the blue lines in Figure 2. There is a fair amount of variability among the individual ensemble
284	members (thin light blue lines) in their ability to meet the global mean, T1 and T2 targets, however the ensemble
285	mean (thick blue line) shows very good agreement between these variables and their target values.
286	
287	3.3 Surface temperature and precipitation
288	

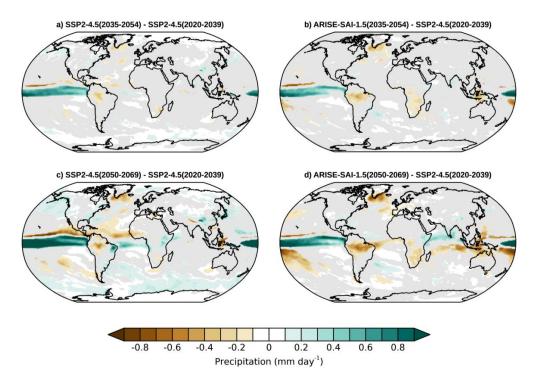
289

Figure 4: Ensemble and annual mean surface (2m) temperature differences between a) SSP2-4.5 (2035-2054) and
SSP2-4.5 (2020-2039), b) ARISE-SAI-1.5 (2035-2054) and SSP2-4.5 (2020-2039), c) SSP2-4.5 (2050-2069) and
SSP2-4.5 (2020-2039), and d) ARISE-SAI-1.5 (2050-2069) and SSP2-4.5 (2020-2039). Gray shading indicates
regions where the differences are not statistically significant at the 95% level using a two-sided Student's t test.


Figure 4 shows the ensemble and annual mean surface temperature changes for two time periods, 2035 - 2054 and
2050 - 2069, during the SSP2-4.5 and ARISE-SAI-1.5 simulations relative to the 2020 - 2039 period. Fig 4 a, c
show the steady increase in surface temperature with time over the majority of the globe, with largest warming
occurring in the Northern Hemisphere high latitudes. The North Atlantic is the only region of the globe that is

299 cooling in the 21st century. This "warming hole" in the North Atlantic is a feature of several of the recent generation 300 Earth system models and is attributed to the AMOC (Drijfhout et al. 2012, Chemke et al. 2020, Keil et al. 2020). 301 Specifically, in a warming climate with a reduction in the deep water formation, the AMOC weakens. This results in 302 less heat transport into the Northern North Atlantic, producing cooler temperatures that oppose the anticipated 303 effects of global warming. Figures 4b and 4d demonstrate the success of the SAI strategy in keeping the global 304 temperatures near the 2020 - 2039 average, or at ~ 1.5 K above pre-industrial values. In ARISE-SAI-1.5, near 305 surface annual mean temperature throughout the entire simulation is within 0.5 K of that goal over the majority of 306 the globe. The largest exception to that is the North Atlantic warming hole, where surface temperatures remain 307 cooler relative to the northern North Atlantic than in the present day or with comparison to SSP2-4.5. In addition, in 308 the ensemble mean, ARISE-SAI-1.5 simulations show residual warming over North America, as well as over 309 Eastern South Pacific Ocean (off the coast of South America), and in parts of Antarctica as compared to the 2020 -310 2039 period. Residual changes relative to the target period from the application of SAI are expected, as SAI can not 311 perfectly reverse the effects of increasing greenhouse gases. 312 TThe precipitation changes in SSP2-4.5 and ARISE-SAI-1.5 simulations for the same time periods 313 examined for surface temperature changes are shown in Figures 5 and 6. Consistent with prior similar studies, SSP2-314 4.5 simulations show primarily an increase of precipitation in a warming climate, with the largest increases along the 315 Equatorial Pacific Ocean, and a strong drying region northward of that (Figs 5, 6a,c). In ARISE-SAI-1.5, consistent 316 with previous studies (Kravitz et al., 2017; Lee et al. 2020), restoring global mean temperature is associated with an 317 overall decrease in annual mean precipitation (Fig 5), however regionally both increases and decreases occur. In 318 ARISE-SAI-1.5, the increased precipitation across the Equatorial Pacific seen in SSP2-4.5 decreases in magnitude, 319 but is still a persistent feature. ARISE-SAI-1.5 also shows drying north and south of that region as well as 320 intensified drying over Northern South America, South Africa, Indian Ocean south of the Equator and northernmost 321 Australia. The Indian Ocean north of the Equator and India are projected to be wetter in ARISE-SAI-1.5 as 322 compared to the 2020 - 2039 period of SSP2-4.5.

323



324

325 Figure 5: Same as Figure 3a but for precipitation.

327

328 Figure 6: Same as Figure 4 but for annual mean precipitation.

329

330 4 Conclusions

331 We have described here a detailed new modeling protocol and first set of simulations entitled Assessing Responses 332 and Impacts of Solar climate intervention on the Earth system with Stratospheric Aerosol Injection (ARISE-SAI), 333 for studies of impacts of climate intervention using stratospheric aerosols. We have carried out these simulations 334 utilizing CESM2(WACCM6) and provided extensive output for community analysis. The protocol for simulations 335 described here can be easily implemented in other Earth system models with similar capabilities; furthermore, the 336 protocol can easily be adapted to explore different climate intervention scenarios considering other climate targets, 337 such as different global mean cooling targets, and in the future extended to other types of climate intervention, such 338 as marine cloud brightening. The SAI injection strategy builds on the approach used in GLENS that was carried out 339 with CESM1(WACCM), but uses a more moderate background emissions scenario, a start date of 2035 rather than 340 2020, and a target temperature of 1.5°C over pre-industrial following the AR6 definition; the set of simulations 341 presented here also uses a newer version of CESM, which is the same as used for CMIP6 (Gettelman et al., 2019). In 342 these new simulations, the SO₂ injections required to keep the global mean temperature, interhemispheric 343 temperature gradient, and pole-to-pole temperature gradient at the target level in ARISE-SAI-1.5 are needed primarily at 15°S, in contrast to GLENS which utilized SO₂ injections primarily at 30°N and 30°S. The reasons for 344 345 these differences are currently being investigated in detail, and it highlights the need to reproduce such experiments

- with other climate models to understand their sources. Surface climate in ARISE-SAI-1.5 is very similar to that
 during the reference period (2020 2039), however residual changes still remain, in particular in the North Atlantic,
 where surface temperature is cooler than in the reference period. The robustness of these projected regional residuals
 in other climate models, or under different climate targets, would also be of extreme interest. Consistent with prior
 studies, global mean precipitation in ARISE-SAI-1.5 is smaller than during the reference period.
- 351

352 Appendix A

Variable Name	Description
ACTNL	Average Cloud Top droplet number
ACTREL	Average Cloud Top droplet effective radius
bc_a4_SRF*	Black carbon in additional mode in bottom layer
BURDENBCdn	Black carbon aerosol burden, day night
BURDENDUSTdn	Dust aerosol burden, day night
BURDENPOMdn	Particulate organic matter aerosol burden, day night
BURDENSEASALTdn	Seasalt aerosol burden, day night
BURDENSO4dn	Sulfate aerosol burden, day night
BURDENSOAdn	SOA aerosol burden, day night
BUTGWSPEC	Zonal wind tendency from convective gravity waves
CDNUMC	Vertically-integrated droplet concentration
CLDICE	Grid box averaged cloud ice amount
CLDLIQ	Grid box averaged cloud liquid amount
CLDTOT	Vertically-integrated total cloud
CLOUD	Cloud fraction
CMFMC	Moist convection (deep+shallow) mass flux
CMFMCDZM	Convection mass flux from ZM deep
dst_a1*	Dust concentration in accumulation mode
dst_a2*	Dust concentration in Aitken mode
dst_a3*	Dust concentration in coarse mode
dst_a2_SRF*	Aitken mode dust in bottom layer

FCTL	Fractional occurrence of cloud top liquid
FLDS	Downwelling longwave flux at surface
FLDSC	Clearsky Downwelling longwave flux at surface
FLNR	Net longwave flux at tropopause
FLNS	Net longwave flux at surface
FLNSC	Clearsky net longwave flux at surface
FLNT	Net longwave flux at top of model
FLNTC	Clearsky net longwave flux at top of model
FLUT	Upwelling longwave flux at top of model
FLUTC	Clearsky upwelling longwave flux at top of model
FSDS	Downwelling solar flux at surface
FSDSC	Clearsky downwelling solar flux at surface
FSNR	Net solar flux at tropopause
FSNS	Net solar flux at surface
FSNSC	Clearsky net solar flux at surface
FSNTOA	Net solar flux at top of atmosphere
FSNTOAC	Clearsky net solar flux at top of atmosphere
LHFLX	Surface latent heat flux
MASS	mass of grid box
03	Ozone
MSKtem	Transformed Eulerian Mean diagnostics mask
OMEGA	Vertical velocity (pressure)
OMEGA500	Vertical velocity at 500 hPa
PBLH	Planetary boundary layer height
PDELDRY	Dry pressure difference between levels
PHIS	Surface geopotential
PM25_SRF	PM2.5 in the bottom layer
pom_a4_SRF*	Particulate organic matter in additional mode in bottom layer

PRECC	Convective precipitation rate
PRECT	Total (convective and large-scale) precipitation rate
PRECTMX	Maximum (convective and large-scale) precipitation rate
PS	Surface pressure
PSL	Sea level pressure
Q	Specific humidity
QREFHT	Reference height humidity
QSNOW	Diagnostic grid-mean snow mixing ratio
RELHUM	Relative humidity
RHREFHT	Reference height relative humidity
SFso4_a1*	surface flux of SO ₄ in accumulation mode
SFso4_a2*	surface flux of SO ₄ in Aitken mode
SFbc_a4*	Surface flux of black carbon in additional mode
SFpom_a4*	Particulate organic matter in additional mode
SFdst_a1*	Surface flux of dust in accumulation mode
SFdst_a2*	Surface flux of dust in Aitken mode
SFdst_a3*	Surface flux of dust in coarse mode
SHFLX	Surface sensible heat flux
SO2	Sulfur dioxide concentration
SOLIN	Solar insolation
SOLLD	Solar downward near infrared diffuse to surface
SOLSD	Solar downward visible diffuse to surface
Т	Temperature
T500, T700, T850	Temperature at 500, 700 and 850 hPa respectively
TAUBLJX	Zonal integrated drag from Beljaars SGO
TAUBLJY	Meridional integrated drag from Beljaars SGO
TAUGWX	Zonal gravity wave surface stress
TAUGWY	Meridional gravity wave surface stress

TAUX	Zonal surface stress
TAUY	Meridional surface stress
TGCLDIWP	Total grid-box cloud ice water path
THzm	Zonal-Mean potential temperature defined on ilevels
TGCLDLWP	Total grid-box cloud liquid water path
TMQ	Total (vertically integrated) precipitable water
TREFHT	Reference height temperature
TREFHTMN**	Minimum reference height temperature
TREFHTMX**	Maximum reference height temperature
TS	Surface temperature (radiative)
TSMN	Minimum surface temperature
TSMX	Minimum surface temperature
U	Zonal wind
U10	10m wind speed
UTGWORO	U tendency - orographic gravity wave drag
UTGWSPEC	U tendency - non-orographic gravity wave drag
UVzm	Meridional flux of zonal momentum: 3D zonal mean
UWzm	Vertical flux of zonal momentum: 3D zonal mean
Uzm	Zonal mean zonal wind defined on ilevels
V	Meridional wind
VTHzm	Meridional Heat Flux: 3D zonal mean
Vzm	Zonal mean meridional wind defined on ilevels
Wzm	Zonal mean vertical wind defined on ilevels
Z3	Geopotential Height (above sea level)
Z500	Geopotential height at 500 hPa pressure surface
SO2	SO ₂ concentration

354

355 Table A1: Available daily averaged output from the atmospheric model in ARISE-SAI-1.5 simulations and SSP2-

356 4.5 CESM2(WACCM6) simulations. Variables marked with a '*' are not available from the first five members of

- 357 CESM2(WACCM6) SSP2-4.5 simulations. **indicates variables that are available (but erroneous) in the first five
- 358 members of CESM2(WACCM6) SSP2-4.5 simulations.
- 359

Name of Variable(s)	Variable Description
CAPE	Convective available potential energy
CIN	Convective inhibition
CLDLOW	Vertically-integrated low cloud
FLUT	Upwelling longwave flux at top of model
PRECT	Total (convective and large-scale) precipitation rate
PRECC	Convective precipitation rate
PRECSC	Convective snow rate (water equivalent)
PRECSL	Large-scale snow rate (water equivalent)
PSL	Sea level pressure
Q200, Q500, Q700, Q850, Q925	Specific humidity at 200, 500, 700, 850 and 925 hPa respectively
T200, T300, T500, T700, T850, T925	Temperature at 200, 300, 500, 700, 850 and 925 hPa respectively
TMQ	Total (vertically integrated) precipitable water
U200, U300, U500, U700, U850, U925	Zonal wind at 200, 300, 500, 700, 850 and 925 hPa respectively
V200, V300, V500, V700, V850, V925	Meridional wind at 200, 300, 500, 700, 850 and 925 hPa respectively
Z200, Z500, Z700, Z850, Z925	Geopotential height at 200, 500, 700, 850 and 925 hPa respectively

360

- 361 Table A2: 3-hourly averaged output from the atmospheric model in ARISE-SAI-1.5 simulations and additional five
- 362 SSP2-4.5 CESM2(WACCM6) simulations. None of the above output is contained in the first five ensemble
- 363 members of CESM2(WACCM6) SSP2-4.5 simulations.

364

366

IVT	Integrated water vapor transport
PS	Surface Pressure
Q*	Specific humidity
T*	Temperature
TS	Surface temperature (radiative)
PSL	Sea level pressure
RELHUM*	Relative humidity
TMQ	Total (vertically integrated) precipitable water
U*	Zonal wind
U10	10m wind speed
uIVT	Zonal water vapor transport
vIVT	Meridional water vapor transport
V*	Meridional wind
Z3*	Geopotential Height

367

368 Table A3: 3-hourly instantaneous output from the atmospheric model in ARISE-SAI-1.5 simulations and additional

369 five SSP2-4.5 CESM2(WACCM6) simulations. For the variables marked with a '*', only the bottom-most 22 levels

370 were retained, hence levels for those variables range from 1000 to 103 hPa. None of the above output is contained in

371 the first five ensemble members of CESM2(WACCM6) SSP2-4.5 simulations.

Name of Variable	Variable Description
NO2_SRF	NO2 in bottom layer
O3_SRF	O3 in bottom layer
PM25_SRF	PM2.5 at the surface
PRECC	Convective precipitation rate
PRECT	Total (convective and large-scale) precipitation rate
TS	Surface temperature (radiative)

376 Table A4: 1-hourly instantaneous output from the atmospheric model in ARISE-SAI-1.5 simulations and additional

377 five SSP2-4.5 CESM2(WACCM6) simulations. None of the above output is contained in the first five ensemble378 members of CESM2(WACCM6) SSP2-4.5 simulations.

Variable Name	Description
AR	Autotrophic respiration
COL_FIRE_CLOSS	Total column-level fire C loss
CPHASE	Crop phenology phase
DSTDEP	Total dust deposition
DSTFLXT	Total surface dust emission
DWT_CONV_CFLUX _PATCH	Patch-level conversion C flux
DWT_SLASH_CFLUX	Slash C flux to litter and CWD due to land use
DWT_WOOD_PROD UCTC_GAIN_PATCH	Patch-level landcover change-driven addition to wood product pools
EFLX_LH_TOT	Total latent heat flux
FGR	Heat flux into soil/snow including snow melt and lake / snow light transmission
FIRA	Net infrared (longwave) radiation

FIRE	Emitted infrared (longwave) radiation
FROOTC	Fine root carbon
FSH	Sensible heat not including correction for land use change and rain/snow conversion
FSR	Reflected solar radiation
GDDHARV	Growing degree days needed to harvest
GDDPLANT	Accumulated growing degree days past planting date for crop
GPP	Gross primary production
GRAINC_TO_FOOD	Grain carbon to food
H2OSNO	Snow depth (liquid water)
HR	Total heterotrophic respiration
НТОР	Canopy top
NPP	Net primary production
Q2M	2m specific humidity
QDRAI	Sub-surface drainage
QDRAI_XS	Saturation excess drainage
QIRRIG	Water added through irrigation
QOVER	Surface runoff
QRUNOFF	Total liquid runoff
QSNOMELT	Snow melt rate
QSOIL	Ground evaporation
QTOPSOIL	Water input to surface
QVEGE	Canopy evaporation
QVEGT	Canopy transpiration
RH2M	2m relative humidity
SLASH_HARVESTC	Slash harvest carbon
SNOWDP	Gridcell mean snow height
SOILWATER_10CM	Soil liquid water + ice in top 10cm of soil
TG	Ground temperature
QDRAI_XS QIRRIG QOVER QOVER QRUNOFF QSNOMELT QSOIL QVEGE QVEGE QVEGE RH2M SLASH_HARVESTC SNOWDP SOILWATER_10CM	Saturation excess drainage Water added through irrigation Surface runoff Total liquid runoff Snow melt rate Ground evaporation Water input to surface Canopy evaporation Canopy transpiration 2m relative humidity Slash harvest carbon Gridcell mean snow height

TLAI	Total projected leaf area index
TOTSOILLICE	Vertically summed soil ice
TOTSOILLIQ	Vertically summed soil liquid water
TREFMNAV	Daily minimum of average 2-m temperature
TREFMXAV	Daily maximum of average 2-m temperature
TSA	2m air temperature
TSKIN	Skin temperature
TSOI_10CM	Soil temperature in top 10cm of soil
TV	Vegetation temperature
TWS	Total water storage
U10	10-m wind
U10_DUST	10-m wind for dust model
URBAN_HEAT	Urban heating flux
WASTEHEAT	Sensible heat flux from heating/cooling sources of urban waste heat
WOOD_HARVESTC	Wood harvest carbon

383

384 Table A5: Available daily averaged output from the land model at landunit-level in ARISE-SAI-1.5 simulations and

additional five SSP2-4.5 CESM2(WACCM6) simulations. None of the above output is contained in the first five

386 ensemble members of CESM2(WACCM6) SSP2-4.5 simulations.

CPHASE	Crop phenology phase
CROPPROD1C	1-yr grain product carbon
CWDC_vr	Coarse woody debris carbon, vertically resolved)
CWDN_vr	Coarse woody debris nitrogen (vertically resolved)
EFLX_LH_TOT	Total latent heat flux
FGR	Heat flux into soil/snow including snow melt and lake / snow light transmission
FPSN	Photosynthesis
FROOTC	Fine root carbon
FSH	Sensible heat not including correction for land use change and

	rain/snow conversion
FSNO_ICE	Fraction of ground covered by snow
GDDHARV	Growing degree days needed to harvest
GDDPLANT	Accumulated growing degree days past planting date for crop
GPP	Gross primary production
GRAINC	Grain carbon
H2OSOI	Volumetric soil water
НТОР	Canopy top
LEAFC	Leaf carbon
LEAFN	Leaf Nitrogen
LITR1C_vr, LITR2C_vr, LITR3C_vr	Amount of carbon in litter in different decomposition pools, vertically resolved
LITR1N_vr, LITR2N_vr, LITR3N_vr	Amount of nitrogen in litter in different decomposition pools, vertically resolved
LIVESTEMC	Live stem carbon
PCT_CFT	% of each crop on the crop landunit
PCT_GLC_MEC	% of each GLC elevation class on the glc_mec landunit
PCT_LANDUNIT	% of each landunit on grid cell
PCT_NAT_PFT	% of each PFT on the natural vegetation (i.e., soil) landunit
QICE_FORC	Surface mass balance of glaciated grid cells forcing sent to the glacier model
QIRRIG	Water added through irrigation
RAIN	Atmospheric rain, after rain/snow repartitioning based on temperature
Rnet	Net radiation
SMINN	Soil mineral N
SMP	Soil matric potential
SOILC_vr	SOIL C (vertically resolved)
SOILN_vr	SOIL N (vertically resolved)

TLAI	Total projected leaf area index
TOPO_FORC	Topographic height sent to glacier model
TOTLITC	Total litter carbon
TOTSOMC	Total soil organic matter carbon
TOTVEGC	Total vegetation carbon, excluding cpool
TOT_WOODPRODC	Total wood product carbon
TREFMNAV	Daily minimum of average 2-m temperature
TREFMXAV	Daily maximum of average 2-m temperature
TSA	2m air temperature
TSAI	Skin temperature
TSRF_FORC	Surface temperature sent to glacier model
TV	Vegetation temperature

388

389 Table A6: Available daily averaged output from the land model at gridcell-level in ARISE-SAI-1.5 simulations and

additional five SSP2-4.5 CESM2(WACCM6) simulations. None of the above output is contained in the first five

391 ensemble members of CESM2(WACCM6) SSP2-4.5 simulations.

Name of Variable	Variable Description
EFLX_LH_TOT	Total latent heat flux
FSH	Sensible heat not including correction for land use change and rain/snow conversion
H2OSNO	Snow depth (liquid water)
H2OSOI	Volumetric soil water
QDRAI	Sub-surface drainage
QDRAI_XS	Saturation excess drainage
QOVER	Surface runoff
QRUNOFF	Total liquid runoff
QSNOMELT	Snow melt rate
QSOIL	Ground evaporation
QTOPSOIL	Water input to surface
QVEGE	Canopy evaporation
QVEGT	Canopy transpiration
SOILICE	Soil ice
SOILLIQ	Soil liquid water
SOILWATER_10CM	Soil liquid water and ice in top 10cm of soil
TOTSOILICE	Vertically summed soil cice
TOTSOILLIQ	Vertically summed soil liquid water
TWS	Total water storage

Table A7: 6-hourly averaged output from the land model in ARISE-SAI-1.5 simulations and additional five SSP2-

4.5 CESM2(WACCM6) simulations. None of the above output is contained in the first five ensemble members of

CESM2(WACCM6) SSP2-4.5 simulations.

Name of Variable	Variable Description	
CaCO3_form_zint_2	Total CaCO3 formation vertical integral	
diatChl_SURF	Diatom chlorophyll surface value	
diatC_zint_100m	Diatom carbon 0-100m vertical integral	
diazChl_SURF	Diazotroph chlorophyll surface value	
diazC_zint_100m	Diazotroph carbon 0-100m vertical integral	
DpCO2_2	Atmosphere-ocean difference in the partial pressure of CO2	
ECOSYS_IFRAC_2	Ice fraction for ecosystem fluxes	
ECOSYS_XKW_2	Gas transfer velocity computed based on wind speed squared for ecosys fluxes	
FG_CO2_2	Dissolved inorganic carbon surface gas glux	
photoC_diat_zint_2	Diatom carbon fixation vertical integral	
photoC_diaz_zint_2	Diazotroph carbon fixation vertical integral	
photoC_sp_zint_2	Diatom carbon fixation vertical integral	
spCaCO3_zint_100m	Small Phyto CaCO3 0-100m vertical integral	
spChl_SURF	Small phyto chlorophyll surface value	
spC_zint_100m	Small phyto carbon 0-100m vertical integral	
STF_O2_2	Dissolved oxygen surface flux	
zooC_zint_100m	Zooplankton carbon 0-100m vertical integral	
HMXL_DR_2	Mixed-Layer depth	
SSS	Sea surface salinity	
SST	Surface potential temperature	
SST2	Surface potential temperature**2	
XMXL_2	Diazotroph carbon fixation vertical integral	

Table A8: Daily averaged output from the ocean model in ARISE-SAI-1.5 simulations and all SSP2-4.5

CESM2(WACCM6) simulations.

412

413

Name of Variable	Variable Description
aice_d	cce area (aggregate)
aicen_d	ice area, categories
apond_ai_d	melt pond fraction of grid cell
congel_d	congelation ice growth
daidtd_d	area tendency dynamics
daidtt_d	area tendency thermodynamics
dvidtd_d	volume tendency dynamics
dvidtt_d	volume tendency thermodynamics
frazil_d	frazil ice growth
fswabs_d	snow/ice/ocn absorbed solar flux
fswdn_d	down solar flux
fswthru_d	shortwave through the sea ice to ocean
hi_d	grid cell mean ice thickness
hs_d	grid cell mean snow thickness
ice_present_d	fraction of time-avg interval that ice is present
meltb_d	basal ice melt
meltl_d	lateral ice melt
melts_d	top snow melt
meltt_d	top ice melt
sisnthick_d	sea ice snow thickness
sispeed_d	ice speed
sitemptop_d	sea ice surface temperature
sithick_d	sea ice thickness
siu_d	ice x velocity component
siv_d	ice y velocity component

Г

	vicen_d	ice volume, categories
	vsnon_d	snow depth on ice, categories
415 416 417 418	CESM2(WACCM6) simulations.	from the sea-ice model in ARISE-SAI-1.5 simulations and all SSP2-4.5
419 420	Code Availability	
420 421 422 423 424 425 426	carry out the simulations. Python	ilable from <u>https://www.cesm.ucar.edu/</u> . CESM tag cesm2.1.4-rc.08 was used to scripts to generate the case directories with appropriate model tags and output can <u>ord/6474201</u> . The code for the SO ₂ injections controller can be downloaded from 2#.Y176rPPMKQc.
420	Data Availability	
428	2	uscript are available at https://zenodo.org/record/6473954#.YmCAwy-B3qA
429	from the CESM2(WACCM6) SSI	P2-4.5 simulations and at https://zenodo.org/record/6473775#.YmCAdy-B3qA
430	from the ARISE-SAI-1.5 simulation	ons. Complete output from all 10 members of CESM2(WACCM6) SSP2-4.5
431		imulations is freely available the NCAR Climate Data Gateway at
432		8 and <u>https://doi.org/10.5065/9kcn-9y79</u> respectively. We anticipate community
433 434	•	Earth system of the ARISE-SAI-1.5 simulations. There is no obligation to inform you are performing, but it would be helpful in order to coordinate analysis and
434 435 436	avoid duplicate efforts.	you are performing, out it would be neiprur in order to coordinate anarysis and
437	Author contribution	
438 439	Ū.	ulations, compiled output requests, created most of the figures, and drafted the tion controller carried out simulations, created a figure, and wrote parts of the

439 manuscript. DV set-up the injection controller, carried out simulations, created a figure, and wrote parts of the 440 manuscript. DM co-designed the simulations and helped with interpretation of results. DB created the time series of 441 and archived all the data. NR created namelists with desired output and scripts to easily set-up the simulations. WL 442 analyzed the control simulations and provided targets for the controller. MT and JL gave input to simulation design 443 and data output All authors reviewed manuscript. requests. the

444

445 **Competing interests**

- 446 The authors declare that they have no conflict of interest.
- 447
- 448 Acknowledgements

449	This material is based upon work supported by the National Center for Atmospheric Research, which is a major
450	facility sponsored by the National Science Foundation under Cooperative Agreement no. 1852977 and by
451	SilverLining through its Safe Climate Research Initiative. The Community Earth System Model (CESM) project is
452	supported primarily by the National Science Foundation. Computing and data storage resources, including the
453	Cheyenne supercomputer (doi:10.5065/D6RX99HX), were provided by the Computational and Information Systems
454	Laboratory (CISL) at NCAR.
455	
456	References
457 458	Andrews, D. G., Holton, J. R., and Leovy, C. B.: Middle atmosphere dynamics. San Diego, CA: Academic Press., 1987.
459	Beljaars, A. C. M., Brown, A. R., and Wood, N.: A new parameterization of turbulent orographic form drag.
460	Quarterly Journal of the Royal Meteorological Society, 130, 1327–1347. https://doi.org/10.1256/qi.03.73,
461	2004.
462	Burgess, M. G., J. Ritchie, J. Shapland and Pielke R. Jr.: IPCC baseline scenarios have over-projected CO2
463	emissions and economic growth. Env. Res. Lett., 16, 014016, https://doi.org/10.1088/1748-9326/abcdd2,
464	2021.
465	Carlson, C. J., and Trisos, C. H.: Climate engineering needs a clean bill of health. Nature Climate Change, 8(10),
466	843-845, https://doi.org/10.1038/s41558-018-0294-7, 2018.
467	Chemke, R., Zanna, L., and Polvani, L. M.: Identifying a human signal in the North Atlantic warming hole. Nature
468	Communications, 11(1), 1–7, 2022.
469	Coburn, J., and Pryor, S. C.: Differential Credibility of Climate Modes in CMIP6, J. Climate, 34(20), 8145-8164,
470	2021.
471	Bingaman D. C, Christian V. Rice, Wake Smith and Patrick Vogel: A Stratospheric Aerosol Injection Lofter
472	Aircraft Concept: Brimstone Angel, AIAA 2020-0618, AIAA Scitech 2020 Forum, January 2020.
473	Danabasoglu, G., Bates, S. C., Briegleb, B. P., Jayne, S. R., Jochum, M., Large, W. G., Peacock S., Yeager S. G.:
474	The CCSM4 ocean component. Journal of Climate, 25, 1361-1389. https://doi.org/10.1175/JCLI-D-11-
475	<u>00091.1</u> , 2012.
476	Danabasoglu, G., Lamarque, JF., Bacmeister, J., Bailey, D. A., DuVivier, A. K., Edwards, J., Emmons L. K.,
477	Fasullo J., Garcia R., Gettelman A., Hannay C., Holland M. M., Large W. G., Lauritzen P. H., Lawrence D.
478	M., Lenaerts J. T. M., Lindsay K., Lipscomb, W. H., Mills, M. J., Neale R., Oleson K. W., Otto-Bliesner

479 480 481 482 483	B., Phillips A. S., Sacks W., Tilmes S., van Kampenhout L., Vertenstein M., Bertini A., Dennis J., Deser C., Fischer C., Fox-Kemper B., Kay J. E., Kinnison D., Kushner P. J, Larson V. E., Long M. C., Mickelson S., Moore J. K., Nienhouse E., Polvani L., Rasch P. J., and W. G. Strand: The Community Earth System Model Version 2 (CESM2). Journal of Advances in Modeling Earth Systems, 12, e2019MS001916. https://doi.org/ 10.1029/2019MS001916, 2020.
484	Deser, C., Phillips, A., Bourdette, V., Bourdette V., and Teng H.: Uncertainty in climate change projections: the
485	role of internal variability. Clim Dyn 38, 527–546 (2012), <u>https://doi.org/10.1007/s00382-010-0977-x</u> ,
486	2020.
487	Drijfhout, S., van Oldenborgh, G. J., and Cimatoribus, A.: Is a Decline of AMOC Causing the Warming Hole
488	above the North Atlantic in Observed and Modeled Warming Patterns?, Journal of Climate, 25, 8373–8379,
489	https://doi.org/10.1175/JCLI-D-12-00490.1, http:// journals.ametsoc.org/doi/abs/10.1175/JCLI-D-12-
490	00490.1, 2012.
491	DuVivier, A. K., Holland, M. M., Kay, J. E., Tilmes, S., Gettelman, A., and Bailey, D. A.: Arctic and Antarctic sea
492	ice mean state in the Community Earth System Model Version 2 and the influence of atmospheric
493	chemistry. Journal of Geophysical Research: Oceans, 125, e2019JC015934. https://doi.org/
494	10.1029/2019JC015934, 2020.
495	Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K. E.: Overview of the
496	Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization, Geosci.
497	Model Dev., 9, 1937–1958, https://doi.org/10.5194/gmd-9-1937-2016, 2016.
498	Gettelman, A., Mills, M. J., Kinnison, D. E., Garcia, R. R., Smith, A. K., Marsh, D. R., Times, S., Vitt F., Bardeen
499	C. G., McInerny J., Liu HL., Solomon S.C., Polvani L. M., Emmons L. K., Lamarque JF., Richter, J. H.,
500	Glanville A. S., Bacmeister J. T., Philips A. S., Neale R. B., Simpson I. R., DuViviver A. K., Hodzic A.,
501	and Randel W. J.: The whole atmosphere community climate model version 6 (WACCM6). Journal of
502	Geophysical Research: Atmospheres, 124, 12,380–12,403. https://doi.org/ 10.1029/2019JD030943, 2019.
503	Gettelman, A., and Morrison, H.: Advanced two-moment bulk microphysics for global models. Part I: Off-line
504	tests and comparison with other schemes. Journal of Climate, 28, 1268–1287, <u>https://doi.org/10.1175/JCLI-</u>
505	D-14-00102.1, 2015.
506 507	Golaz, JC., Larson, V. E., and Cotton, W. R.: A PDF-based model for boundary layer clouds. Part I: Method and model description. Journal of the Atmospheric Sciences, 59, 3540–3551, 2002.
508 509	Hausfather, Z. and G. P. Peters: Emissions - 'business as usual' story is misleading. Nature 577, 618-620 (2020), doi: https://doi.org/10.1038/d41586-020-00177-3, 2020.

510	Hunke, E. C., Hebert, D. A., and Lecomte, O.: Level-ice melt ponds in the Los Alamos sea ice model, CICE.
511	Ocean Modelling, 71, 26–42, <u>https://doi.org/10.1016/j.ocemod.2012.11.008</u> , 2013.
512	Hunke, E. C, Lipscomb, W. H., Turner, A. K., Jeffery, N., and Elliott, S.: CICE: The Los Alamos Sea Ice Model.
513	Documentation and Software User's Manual. Version 5.1. T-3 Fluid Dynamics Group, Los Alamos
514	National Laboratory, Tech. Rep. LA-CC-06-012, 2015.
515	IPCC: Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-
516	industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the
517	global response to the threat of climate change, sustainable development, and efforts to eradicate poverty
518	[Masson-Delmotte, V., P. Zhai, HO. Pörtner, D. Roberts, J. Skea, P.R. Shukla, A. Pirani, W. Moufouma-
519	Okia, C. Péan, R. Pidcock, S. Connors, J.B.R. Matthews, Y. Chen, X. Zhou, M.I. Gomis, E. Lonnoy, T.
520	Maycock, M. Tignor, and T. Waterfield (eds.)]. 2018.
521	 IPCC: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth
522	Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A.
523	Pirani, S. L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M. I. Gomis, M. Huang, K.
524	Leitzell, E. Lonnoy, J. B. R. Matthews, T. K. Maycock, T. Waterfield, O. Yelekçi, R. Yu and B. Zhou
525	(eds.)]. Cambridge University Press. 2021.
526 527 528 529 530	 Kay, J. E., Deser, C., Phillips, A., Mai, A., Hannay, C., Strand, G., Arblaster, J. M., Bates, S. C., Danabasoglu, G., Edwards, J., Holland, M., Kushner, P., Lamarque, JF., Lawrence, D., Lindsay, K., Middleton, A., Munoz, E., Neale, R., Oleson, K., Polvani, L., and Vertenstein, M.: The Community Earth System Model (CESM) Large Ensemble Project: A Community Resource for Studying Climate Change in the Presence of Internal Climate Variability, Bulletin of the American Meteorological Society, 96(8), 1333-1349, 2015.
531	Keil, P., Mauritsen, T., Jungclaus, J. Hedemann C., Olonscheck D., and Ghosh R.:Multiple drivers of the North
532	Atlantic warming hole. Nat. Clim. Chang. 10, 667–671, <u>https://doi.org/10.1038/s41558-020-0819-8</u> , 2020.
533 534 535 536 537	 Kravitz, B., Caldeira K., Boucher O., Robock A., Rasch P. J., Alterskjær K., Karam D. B., Cole J. N. S., Curry C. L., Haywood J. M., Irvine P. J., Ji D., Jones A., Kristjánsson J. E., Lunt D. J., Moore J. C., Niemeier U., Schmidt H., Schulz M., Singh B., Tilmes S., Watanabe S., Yang S., and Yoon J-H.: Climate model response from the Geoengineering Model Intercomparison Project (GeoMIP), J. Geophys. Res. Atmos., 118, 8320–8332, doi:10.1002/jgrd.50646, 2013.
538 539 540 541	 Kravitz, B., MacMartin, D. G., Visioni, D., Boucher, O., Cole, J. N. S., Haywood, J., Jones, A., Lurton, T., Nabat, P., Niemeier, U., Robock, A., Seferian, R., and Tilmes, S.: Comparing different generations of idealized solar geoengineering simulations in the Geoengineering Model Intercomparison Project (GeoMIP), Atmospheric Chemistry and Physics, 21, 4231-4247, <u>https://doi.org/10.5194/acp-21-4231-2021</u>, 2021.

542	Kravitz, B., MacMartin, D. G., Mills, M. J., Richter, J. H., Tilmes, S., Lamarque, JF., J. J. Tribbia, and Vitt, F.:
543	First simulations of designing stratospheric sulfate aerosol geoengineering to meet multiple simultaneous
544	climate objectives. Journal of Geophysical Research: Atmospheres, 122, 12,616-12,634,
545	https://doi.org/10.1002/2017JD026874, 2017.
546	Larson, V. E., CLUBB-SILHS: A parameterization of subgrid variability in the atmosphere. arXiv:1711.03675v2
547	[physics.ao-ph], 2017.
548	Lawrence, D. M., Fisher, R. A., Koven, C. D., Oleson, K. W., Swenson, S. C., Bonan, G., Collier N., Ghimire B.,
549	van Kampenhout L., Kennedy D., Kluzek E., Lawrence P. J., Li F., Li H., Lombardozzi D., Riley W. J.,
550	Sacks W. J., Shi M., Vertenstein M., Wieder W. R., Xu C., Ali A. A., Badger A. M., Bisht G., van den
551	Broeke M., Brunke M. A., Burns S. P., Buzan J., Clark M., Craig A., Dahlin K., Drewniak B., Fisher J. B.,
552	Flanner M., Fox A. M., Gentine P., Hoffman F., Keppel-Aleks G., Knox R., Kumar S., Lenaerts J., Leung
553	L. R., Lipscomb W. H., Lu Y., Pandey A., Pelletier J. D., Perket J., Randerson J. T., Ricciuto D. M.,
554	Sanderson B. M., Slater A., Subin Z. M., Tang J., Thomas R. Q., Val Martin M., and Zeng Z: The
555	Community Land Model Version 5: Description of new features, benchmarking, and impact of forcing
556	uncertainty. Journal of Advances in Modeling Earth Systems, 11, 4245-4287.
557	https://doi.org/10.1029/2018MS001583, 2019.
558	Lee, W., D. MacMartin, D. Visioni, and Kravitz B.: Expanding the design space of stratospheric aerosol
559	geoengineering to include precipitation-based objectives and explore trade-offs. Earth Syst. Dynam.,11,
560	1051-1072, https://doi.org/10.5194/esd-11-1051-2020, 2022.
561	Levis, S., Badger, A., Drewniak, B., Nevison, C., and Ren, X. L.: CLMcrop yields and water requirements:
562	Avoided impacts by choosing RCP 4.5 over 8.5. Climatic Change, 146, 501-515,
563	https://doi.org/10.1007/s10584-016-1654-9, 2018.
564	Li, H. Y., Wigmosta, M. S., Wu, H., Huang, M. Y., Ke, Y. H., Coleman, A. M., & Leung, L. R.: A physically
565	based runoff routing model for land surface and Earth system models. Journal of Hydrometeorology, 14,
566	808-828, https://doi.org/10.1175/Jhm-D-12-015.1, 2013.
567	Li, F., Levis, S., and Ward, D. S.: Quantifying the role of fire in the Earth system—Part 1: Improved global fire
568	modeling in the Community Earth System Model (CESM1). Biogeosciences, 10, 2293-2314.
569	https://doi.org/10.5194/bg-10-2293-2013, 2013.
570	Li, F., and Lawrence, D. M.: Role of fire in the global land water budget during the twentieth century due to
571	changing ecosystems. Journal of Climate, 30, 1893–1908. https://doi.org/10.1175/JCLI-D-16-0460.1, 2017.

572	Liu, X., Ma, P. L., Wang, H., Tilmes, S., Singh, B., Easter, R. C., et al.: Description and evaluation of a new four-
573	mode version of the Modal Aerosol Module (MAM4) within Version 5.3 of the Community Atmosphere
574	Model. Geoscientific Model Development, 9, 505–522. <u>https://doi.org/10.5194/gmd-9-505-2016</u> , 2016.
575 576	MacMartin, D. G., Kravitz, B., Keith, D. W., and Jarvis, A.: Dynamics of the coupled human-climate system resulting from closed-loop control of solar geoengineering. Climate Dynamics, 43, 243–258. 2014.
577	MacMartin, D. G., Wang, W., Kravitz, B., Tilmes, S., Richter, J. H., and Mills, M. J.: Timescale for detecting
578	the climate response to stratospheric aerosol geoengineering. Journal of Geophysical Research:
579	Atmospheres, 124, 1233–1247. https://doi.org/10.1029/2018JD028906, 2019.
580	Maher, N., Milinski, S., and Ludwig, R.: Large ensemble climate model simulations: introduction, overview, and
581	future prospects for utilising multiple types of large ensemble, Earth Syst. Dynam., 12, 401–418,
582	https://doi.org/10.5194/esd-12-401-2021, 2021.
583	Meehl, G. A., Arblaster, J. M., Bates, S., Richter, J. H., Tebaldi, C., Gettelman, A., et al.: Characteristics of future
584	warmer base states in CESM2. Earth and Space Science, 7, e2020EA001296. https://doi.
585	org/10.1029/2020EA001296, 2020.
586	Mills, M. J., Richter, J. H., Tilmes, S., Kravitz, B., MacMartin, D. G., Glanville, A. A., Tribbia J. T, Lamarque
587	J-F., Vitt F., Schmidt A., Gettelman A., Hannay C., Bacmeister J. T., and Kinnison, D. E.: Radiative and
588	chemical response to interactive stratospheric sulfate aerosols in fully coupled CESM1(WACCM). Journal
589	of Geophysical Research: Atmospheres, 122, 13,061–13,078, https://doi.org/10.1002/2017JD027006,
590	2017.
591 592 593	Moore, J. K., Doney, S. C., Kleypas, J. A., Glover, D. M., and Fung, I. Y.: An intermediate complexity marine ecosystem model for the global domain. Deep Sea Research, 49, 403–462. <u>https://doi.org/10.1016/S0967-0645(01)00108-4</u> , 2002.
594	Moore, J. K., Doney, S. C., and Lindsay, K.: Upper ocean ecosystem dynamics and iron cycling in a global three-
595	dimensional model. Global Biogeochemical Cycles, 18, GB4028. <u>https://doi.org/10.1029/2004GB002220</u> ,
596	2004.
597	Moore, J. K., Lindsay, K., Doney, S. C., Long, M. C., & Misumi, K. Marine Ecosystem Dynamics and
598	Biogeochemical Cycling in the Community Earth System Model [CESM1(BGC)]: Comparison of the
599	1990s with the 2090s under the RCP4.5 and RCP8.5 scenarios. Journal of Climate, 26, 9291–9312.
600	<u>https://doi.org/10.1175/JCLI-D-12-00566.1</u> , 2013.

601 602 603	National Academies of Sciences, Engineering, and Medicine. Reflecting Sunlight: Recommendations for Solar Geoengineering Research and Research Governance. Washington, DC: The National Academies Press. https://doi.org/10.17226/25762, 2021.
604	O'Neill, B. C., Tebaldi, C., Van Vuuren, D. P., Eyring, V., Friedlingstein, P., Hurtt, G., Knutti R., Kriegler E.,
605	Lamarque J-F., Lowe J., Meehl G. A., Moss R., Riahi K., and Sanderson B. M.: The Scenario Model
606	Intercomparison Project (ScenarioMIP) for CMIP6. Geoscientific Model Development, 9(9), 3461–3482,
607	<u>https://doi.org/10.5194/gmd-9-3461-2016</u> , 2016.
608	Brian C. O'Neill, Elmar Kriegler, Kristie L. Ebi, Eric Kemp-Benedict, Keywan Riahi, Dale S. Rothman, Bas J. van
609	Ruijven, Detlef P. van Vuuren, Joern Birkmann, Kasper Kok, Marc Levy, William Solecki: The roads
610	ahead: Narratives for shared socioeconomic pathways describing world futures in the 21st century, Global
611	Environmental Change, 42, 169-180, <u>https://doi.org/10.1016/j.gloenvcha.2015.01.004</u> , 2017.
612	Oleson, K. W., and Feddema, J. : Parameterization and surface data improvements and new capabilities for the
613	Community Land Model Urban (CLMU). Journal of Advances in Modeling Earth Systems., 12,
614	<u>https://doi.org/10.1029/2018MS001586</u> , 2019.
615	Pitari, G., Aquila V., Kravitz B., Robock A., Watanabe S., Cionni I., De Luca N., Di Geonva G., Mancini E., and
616	Tilmes S.: Stratospheric ozone response to sulfate geoengineering: Results from the Geoengineering Model
617	Intercomparison Project (GeoMIP). J. Geophys. Res. Atmos.,119, 2629–2653,
618	<u>https://doi.org/10.1002/2013JD020566</u> , 2014.
619 620 621	Richter, J. H., Sassi, F., and Garcia, R. R.: Toward a Physically Based Gravity Wave Source Parameterization in a General Circulation Model. Journal of the Atmospheric Sciences, 67(1), 136–156, https://doi.org/10.1175/2009JAS3112.1, 2010.
622	Richter, J. H., Tilmes, S., Mills, M. J., Tribbia, J., Kravitz, B., MacMartin, D. G., Vitt, F., and Lamarque J-F.:
623	Stratospheric dynamical response and ozone feedbacks in the presence of SO2 injections. Journal of
624	Geophysical Research: Atmospheres, 122, 12,557–12,573, <u>https://doi.org/10.1002/2017JD026912</u> , 2017.
625	Scinocca, J., and Mcfarlane N.: The parametrization of drag induced by stratified flow over anisotropic orography.
626	Quarterly Journal of the Royal Meteorological Society, 126, 2353–2394,
627	<u>https://doi.org/10.1256/smsqj.56801</u> , 2000.
628	Simpson, I. R., Tilmes, S., Richter, J. H., Kravitz, B., MacMartin, D. G., Mills, M. J., Fasullo J. T., and
629	Pendergrass A. G.: The regional hydroclimate response to stratospheric sulfate geoengineering and the role
630	of stratospheric heating. Journal of Geophysical Research: Atmospheres, 124, 12587–12616,
631	https://doi.org/10.1029/2019JD031093, 2019.

632	Simpson, I. R., Bacmeister, J., Neale, R. B., Hannay, C., Gettelman, A., Garcia, R. R., Lauritzen P. H., March D.
633	R., Mills M. J., Medeiros B., and Richter J. H.: An evaluation of the large-scale atmospheric circulation and
634	its variability in CESM2 and other CMIP models. Journal of Geophysical Research: Atmospheres, 125,
635	e2020JD032835, https://doi.org/ 10.1029/2020JD032835, 2020.
636	Smith, R., Jones P., Briegleb B., Bryan F., Danabasoglu G., Dennis J., Dukowicz J., Eden C., Fox-Kemper B., Gent
637	P., Hecht M., Jayne S., Jochum M., Large W., Lindsay K., Maltrud M., Norton N., Peacock S., Vertenstein
638	M., Year S.: The Parallel Ocean Program (POP) reference manual, Ocean component of the Community
639	Climate System Model (CCSM), LANL Technical Report, LAUR-10-01853, 141 pp., 2010.
640	Tebaldi, C., Debeire, K., Eyring, V., Fischer, E., Fyfe, J., Friedlingstein, P., Knutti, R., Lowe, J., O'Neill, B.,
641	Sanderson, B., van Vuuren, D., Riahi, K., Meinshausen, M., Nicholls, Z., Tokarska, K. B., Hurtt, G.,
642	Kriegler, E., Lamarque, JF., Meehl, G., Moss, R., Bauer, S. E., Boucher, O., Brovkin, V., Byun, YH.,
643	Dix, M., Gualdi, S., Guo, H., John, J. G., Kharin, S., Kim, Y., Koshiro, T., Ma, L., Olivié, D., Panickal, S.,
644	Qiao, F., Rong, X., Rosenbloom, N., Schupfner, M., Séférian, R., Sellar, A., Semmler, T., Shi, X., Song, Z.,
645	Steger, C., Stouffer, R., Swart, N., Tachiiri, K., Tang, Q., Tatebe, H., Voldoire, A., Volodin, E., Wyser, K.,
646	Xin, X., Yang, S., Yu, Y., and Ziehn, T.: Climate model projections from the Scenario Model
647	Intercomparison Project (ScenarioMIP) of CMIP6, Earth Syst. Dynam., 12, 253-293,
648	https://doi.org/10.5194/esd-12-253-2021, 2021.
649	Tilmes, S., Richter, J. H., Kravitz, B., MacMartin, D. G., Mills, M. J., Simpson, I. R., Glanville, A. S., Fasullo, J.
650	T., Phillips, A. S., Lamarque, J., Tribbia, J., Edwards, J., Mickelson, S., and Ghosh, S.: CESM1(WACCM)
651	Stratospheric Aerosol Geoengineering Large Ensemble Project, Bulletin of the American Meteorological
652	Society, 99 (11), 2361-2371, 2018.
653	Tilmes, S. Mills, M. J., Niemeier, U., Schmidt, H., Robock, A., Kravitz, B., Lamarque, JF., Pitari, G., and
654	English, J. M.: A new Geoengineering Model Intercomparison Project (GeoMIP) experiment designed for
655	Zinginon, et till i tille i Geoengineering frieder intereomparison i tojeet (Geottill) enperiment designed for
	climate and chemistry models, Geosci. Model Dev., 8, 43–49, https://doi.org/10.5194/gmd-8-43-2015,
656	
	climate and chemistry models, Geosci. Model Dev., 8, 43–49, https://doi.org/10.5194/gmd-8-43-2015,
656	climate and chemistry models, Geosci. Model Dev., 8, 43–49, https://doi.org/10.5194/gmd-8-43-2015, 2015.
656 657	climate and chemistry models, Geosci. Model Dev., 8, 43–49, https://doi.org/10.5194/gmd-8-43-2015, 2015. Tilmes S., Richter J. H., Mills M. J., Kravitz B., MacMartin D. G., Vitt F., Tribbia J. T., Lamarque J-F.: Sensitivity
656 657 658	 climate and chemistry models, Geosci. Model Dev., 8, 43–49, https://doi.org/10.5194/gmd-8-43-2015, 2015. Tilmes S., Richter J. H., Mills M. J., Kravitz B., MacMartin D. G., Vitt F., Tribbia J. T., Lamarque J-F.: Sensitivity of aerosol distribution and climate response to stratospheric SO₂ injection locations, Journal of Geophysical
656 657 658 659	 climate and chemistry models, Geosci. Model Dev., 8, 43–49, https://doi.org/10.5194/gmd-8-43-2015, 2015. Tilmes S., Richter J. H., Mills M. J., Kravitz B., MacMartin D. G., Vitt F., Tribbia J. T., Lamarque J-F.: Sensitivity of aerosol distribution and climate response to stratospheric SO₂ injection locations, Journal of Geophysical Research: Atmospheres, 122, 12,591–12,615. https://doi.org/10.1002/2017JD026888, 2017.
656 657 658 659 660	 climate and chemistry models, Geosci. Model Dev., 8, 43–49, https://doi.org/10.5194/gmd-8-43-2015, 2015. Tilmes S., Richter J. H., Mills M. J., Kravitz B., MacMartin D. G., Vitt F., Tribbia J. T., Lamarque J-F.: Sensitivity of aerosol distribution and climate response to stratospheric SO₂ injection locations, Journal of Geophysical Research: Atmospheres, 122, 12,591–12,615. https://doi.org/10.1002/2017JD026888, 2017. Tolman, H. L.: User manual and system documentation of WAVEWATCH III TM version 3.14. Technical note,
656 657 658 659 660 661	 climate and chemistry models, Geosci. Model Dev., 8, 43–49, https://doi.org/10.5194/gmd-8-43-2015, 2015. Tilmes S., Richter J. H., Mills M. J., Kravitz B., MacMartin D. G., Vitt F., Tribbia J. T., Lamarque J-F.: Sensitivity of aerosol distribution and climate response to stratospheric SO₂ injection locations, Journal of Geophysical Research: Atmospheres, 122, 12,591–12,615. https://doi.org/10.1002/2017JD026888, 2017. Tolman, H. L.: User manual and system documentation of WAVEWATCH III TM version 3.14. Technical note, MMAB Contribution, 276, p.220., 2009.

665	Visioni, D., MacMartin, D. G., and Kravitz B.: Is Turning Down the Sun a Good Proxy for Stratospheric Sulfate
666	Geoengineering?, Journal of Geophysical Research: Atmospheres, 126, e2020JD033952, 2021a.
667	Visioni, D., MacMartin, D. G., Kravitz, B., Boucher, O., Jones, A., Lurton, T., Martine, M., Mills, M. J., Nabat, P.,
668	Niemeier, U., Séférian, R., and Tilmes, S.: Identifying the sources of uncertainty in climate model
669	simulations of solar radiation modification with the G6sulfur and G6solar Geoengineering Model
670	Intercomparison Project (GeoMIP) simulations, Atmos. Chem. Phys., 21, 10039-10063,
671	https://doi.org/10.5194/acp-21-10039-2021, 2021b.
672	Zhang, G. J., and McFarlane, N. A.: Sensitivity of climate simulations to the parameterization of cumulus
673	convection in the Canadian Climate Center general circulation model. Atmosphere-Ocean, 33, 407-446,
674	1995.
675	